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Abstract

Background: Human papillomavirus vaccination and cervical screening are lacking in most lower resource settings, where
approximately 80% of more than 500 000 cancer cases occur annually. Visual inspection of the cervix following acetic acid
application is practical but not reproducible or accurate. The objective of this study was to develop a “deep learning”-based
visual evaluation algorithm that automatically recognizes cervical precancer/cancer.
Methods: A population-based longitudinal cohort of 9406 women ages 18–94 years in Guanacaste, Costa Rica was followed for
7 years (1993–2000), incorporating multiple cervical screening methods and histopathologic confirmation of precancers.
Tumor registry linkage identified cancers up to 18 years. Archived, digitized cervical images from screening, taken with a
fixed-focus camera (“cervicography”), were used for training/validation of the deep learning-based algorithm. The resultant
image prediction score (0–1) could be categorized to balance sensitivity and specificity for detection of precancer/cancer. All
statistical tests were two-sided.
Results: Automated visual evaluation of enrollment cervigrams identified cumulative precancer/cancer cases with greater
accuracy (area under the curve [AUC]¼0.91, 95% confidence interval [CI]¼0.89 to 0.93) than original cervigram interpretation
(AUC¼0.69, 95% CI¼0.63 to 0.74; P< .001) or conventional cytology (AUC¼0.71, 95% CI¼0.65 to 0.77; P< .001). A single visual
screening round restricted to women at the prime screening ages of 25–49 years could identify 127 (55.7%) of 228 precancers
(cervical intraepithelial neoplasia 2/cervical intraepithelial neoplasia 3/adenocarcinoma in situ [AIS]) diagnosed cumulatively
in the entire adult population (ages 18–94 years) while referring 11.0% for management.
Conclusions: The results support consideration of automated visual evaluation of cervical images from contemporary digital
cameras. If achieved, this might permit dissemination of effective point-of-care cervical screening.

Cervical cancer remains a leading cause of cancer mortality and
morbidity worldwide (1). Approximately 80% of the half-million
cases and 90% of the quarter-million deaths per year occur in
low- and middle-income countries, where prevention programs
are limited. In some low-resource countries, cervical cancer is
the leading female malignancy, with lifetime cumulative inci-
dence exceeding 5%. The number of new cases is projected to

increase in the decades ahead as the global population grows
and ages (2).

Cervical cancer arises from persistent infection of the cervix
with approximately a dozen carcinogenic types of human papil-
lomavirus (HPV) (3). We can prevent it by prophylactic vaccina-
tion and screening/treatment of cervical cancer precursor
lesions (“precancer”). However, mainstays of cervical cancer
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screening programs in high-resource settings, including cervical
cytology (Pap tests) and colposcopy, require infrastructure and
extensively trained personnel that are lacking in most lower
resource settings. Newer, powerful cervical cancer prevention
tools like prophylactic HPV vaccination and screening with sen-
sitive HPV tests could be very useful in low-resource settings.
However, again, dissemination has been severely limited by
lack of resources and organization.

In search of programmatic simplicity and sustainable costs,
authorities including the World Health Organization, the US
President’s Emergency Plan for AIDS Relief, and the Indian gov-
ernment have endorsed screening of the cervix by visual in-
spection after application (VIA) of acetic acid to highlight
precancerous or cancerous abnormalities (4–6) when more ad-
vanced methods are not feasible. The health worker performing
VIA rates the cervical appearance as normal or abnormal with
particular attention to possible invasive cancer. If the appear-
ance is abnormal and if the size and position of the visible le-
sion permit, the cervical epithelium is destroyed by freezing or
heating (“see and treat”). Excision is sometimes required for se-
vere lesions. As a screening test, VIA is simple and inexpensive
and has been shown to find some invasive cancers while they
are still local and curable by surgery (7). However, the main goal
of screening is to prevent cancer by detection and treatment of
precancers, and VIA is not accurate in distinguishing precancer
from much more common minor abnormalities, leading to both
overtreatment and undertreatment (8–10). Increasingly, it is rec-
ognized that the visual identification of precancer by health
workers, even by experienced nurses and doctors using a colpo-
scope, the reference standard visual tool, is too often unreliable
and inaccurate (11,12). Thus, we currently still lack a practical,
accurate visual screening approach.

In other similarly subjective medical diagnostic situations,
new methods of pattern recognition by computer (referred to as
deep or machine learning) have proven useful (13). Machine
learning-based approaches to cervical cancer screening have
yielded promising early results but have lacked a good measure-
ment of precancer, sufficient sample size, or prospective follow-
up (Supplementary Table 1, available online) (14,15).

We applied a deep learning-based object detection method
[Faster R-CNN, or faster region-based convolutional neural
network (16)] algorithm to cervical images taken during a
National Cancer Institute (NCI) prospective epidemiologic study,
with long follow-up and rigorously defined precancer end-
points, to develop a detection algorithm that can identify cervi-
cal precancer. Here, we demonstrate the proof-of-principle of
an “automated visual evaluation” algorithm applied to archived,
digitized cervical images.

Materials and Methods

Study Population

Conducted from 1993 to 2001, the NCI-funded Proyecto
Epidemiologico Guanacaste accumulated approximately 30 000
screening visits of more than 9000 participants (93.3% accep-
tance) (Figure 1). This longitudinal cohort study of HPV and cer-
vical cancer was conducted in a random sample of a moderate-
risk, poorly screened Costa Rican province (17,18). Participants
aged 18–94 years were screened at baseline and periodically for
up to 7 years using multiple methods at intervals determined by
their screening results and resultant estimated risk of precancer
(mean number of visits¼ 3.4, SD¼ 2.5, approximately 90% of

women with some follow-up) (17,18). In a subsequent linkage
study, the cancer registry was used to extend follow-up for inva-
sive cancer up to 18 years (18,19).

Cervicography

Each screening visit included multiple kinds of tests: cytology,
HPV testing, and cervicography (18). Cervicography, now discon-
tinued, was a visual screening method based on the interpreta-
tion of a pair of cervical photographs (called cervigrams) (20,21).
Two sequential, duplicate cervigrams of the cervix were taken
at each screening visit after acetic acid application using a
fixed-focus, ring-lit film camera called a cerviscope. The rolls of
film were mailed regularly and developed into projection slides
in the United States by National Testing Laboratory Worldwide
(Fenton, MO). Each cervigram image was originally projected on
a wall screen for magnification and classified by one of two
highly experienced National Testing Laboratory Worldwide
physician colposcopist evaluators as normal, atypical, positive
for minor low-grade HPV-induced changes, or positive for pre-
cancer or cancer (the last two combined here). After completion
of the field effort, the photographic images were digitized, and
the files compressed for storage (17,22).

Other Screening Tests in the Guanacaste Cohort

Cytology methods included conventional Pap smears, a proto-
type liquid-based method (23), and a first-generation automated
approach incorporating an early version of a neural network-
based method (24). The conventional Pap smear performed in
Costa Rica best represents the kind typically performed in
lower- and middle-resource regions. HPV testing was performed
by MY09-MY11 consensus primer PCR (25) but was not used for
colposcopy referral in this early epidemiologic demonstration of
HPV predictive value. We defined positivity as detection of one
of 13 high-risk HPV per the International Agency For Research
On Cancer classification (26).

CIN21 Cases and Controls

Cases included women who were diagnosed with histologic
CIN2 or worse (CIN2þ) during enrollment or follow-up. Women
found at a cohort screening examination to have abnormal cy-
tology or cervicography screening results were referred to col-
poscopy performed by a single study gynecologist who biopsied
the worst-appearing lesion. Histologic CIN2 or worse (CIN2þ)
was treated by large loop excision of the transformation zone;
all women with definite or even possible CIN2þ (eg, high-grade
squamous intraepithelial lesion cytology) were referred for
management and censored from further study. The histopatho-
logic reference diagnosis of CIN2þ was determined by majority
review of biopsies and excision specimens by a panel of one
Costa Rica pathologist and one US consultant pathologist, with
disagreements leading to another US pathologist’s review.

Collection and use of the visual images were approved by
the Costa Rican and NCI ethical committees. The images were
collected originally under written informed consent that cov-
ered subsequent research use. The specific use for machine
learning-based algorithms on study images was also approved
by the NCI Institutional Review Board.
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Automated Visual Evaluation Algorithm to Evaluate
Cervical Images

Three controls per case were chosen from among women who
did not present with CIN2þ during active surveillance, fre-
quency matched to time of diagnosis of case (enrollment/fol-
low-up). A random, approximately 70% (197/279) of cases and
frequency-matched controls were chosen for training, and the
remaining approximately 30% were reserved as the initial vali-
dation test set. We randomly chose a single image from each
pair of images available per prediagnostic case visit and control
visit. Of note, after the initial validation (Supplementary
Methods, available online), the main analysis focused on
images taken at enrollment visits.

The system architecture is summarized in Figure 2 and de-
tailed in the Supplementary Methods (available online). The au-
tomated visual evaluation detection algorithm performs two
main functions: detecting (locating) the cervix within the input
image and predicting the probability that the image represents
a case of CIN2þ. The algorithm based on Faster R-CNN performs
object (cervix) detection, feature extraction (calculating the fea-
tures of the object), and classification (predicting the case prob-
ability score). We explored several different techniques, as
described in the Supplementary Methods (available online), and
Faster R-CNN algorithm provided the best combination of speed
and accuracy (27). The inputs to train the model were the cervi-
gram images, cervix location (rectangle encompassing the

cervix), and the class ground truth (case of CIN2þ or control
<CIN2).

To create the cervix locator function of the automated visual
evaluation algorithm, we first trained an independent cervix lo-
cator algorithm using Faster R-CNN to separate the cervix from
the background. This involved annotating 2000 images (manu-
ally drawing a rectangle around the cervix) using a software
tool, shown in Supplementary Figure 2 (available online), devel-
oped for this task. By incorporating the trained locator function,
the only input required for the automated visual evaluation al-
gorithm was the cervigram image. The final model provided
both the predicted cervix location and the case probability.

CNN-based methods are data driven and require large quan-
tities of training data to perform well; however, our dataset
from a population cohort study was limited to the smaller num-
ber of cases that actually occurred. To compensate, we per-
formed transfer learning (28) by first initializing the CNN
architecture with pretrained weights from a model trained with
the ImageNet dataset (29), a database of millions of (noncervi-
gram) images of all kinds of natural objects. We then retrained
with the cervigram images in the training set. We also aug-
mented the image data (30), artificially increasing the number
of cervical images, by performing minor distortions to the origi-
nal images including rotation, mirroring, sheering, and gamma
transformation. We used the faster R-CNN end-to-end training
configuration of stochastic gradient descent optimization with
the parameters in Supplementary Table 2 (available online).

Women included in analysis (N=9,406)

Total CIN2+ cases N=279 Total <CIN2 controls N=9,127

Training set cases, randomly 
selected (N=189)

Training set controls, randomly 
selected (N=555)

CIN2+ cases not in training (N=90)
Valida�on set does not include 
eight cancer upgrades a�er 
random draw.
Screening set included only 
enrollment images, five cases 
did not have enrollment 
images available

Controls not used due to lack of 
enrollment image (N=378)

Training set is one image per woman 
(N=744, 189 cases and 555 controls)

Screening set is enrollment image for 
women (N=8,259, 85 cases and 8,174 

controls)

Valida�on and screening set 
control pool (N= 8,194)

Valida�on set used last image 
during follow-up (N=242)

Screening set used enrollment 
image, note 20 valida�on set 

controls did not have an 
enrollment image (N=8,174)

Valida�on Set is one image per woman 
(N=324, 82 cases and 242 controls)

Enrolled in Guanacaste Costa Rica cohort (N=10,080)

Excluded (N=674)
No Image collected (N=630)
Mul�ple colpo sessions (N=31)
Inadequate histology (N=13)

Analysis sets

Figure 1. Cervical images used for training and validation. The images were drawn from the Proyecto Epidemiologico Guanacaste, a longitudinal cohort study of human

papillomavirus infection, other screening tests, and risk of cervical precancer/cancer (1993–2001). The training and initial validation made use of the last images taken

prior to case diagnosis and approximately 3:1 controls frequency matched to cases on time of study (enrollment/follow-up). The main analysis focused on images (ex-

cluding all images from women in the training set) from cohort enrollment and examined how the automated image analysis of enrollment screening images per-

formed in prediction of cases found over the course of the entire cohort study. In an analysis that counted the absolute numbers of cases detected and controls

referred, it was necessary to reweight, that is, to multiply the findings in the randomly selected validation test by the inverse of the 30% sampling fraction to estimate

numbers for all cases and matched controls (see Methods). CIN ¼ cervical intraepithelial neoplasia.
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These techniques are further described in the Supplementary
Methods (available online).

National Library of Medicine (National Institutes of Health,
USA) collaborators independently checked the technique. This
series of confirmatory experiments was not designed to stand
alone; rather, it was meant to increase credibility of the original
findings by replication outside of the inventing group. They first
followed the architecture of the proposed method to evaluate
the performance of the cervix region locator and of the visual
evaluation algorithm, independently evaluating different sub-
sets of the Guanacaste cohort images for model training than
the original. They also tested the trained network with test
images that were altered to represent a different camera zoom
and moderate image resizing.

To visualize what the algorithm bases its prediction on, we
also implemented a system that generates a heat map showing
which regions of the image most strongly influence the predic-
tion. This system is described in Supplementary Methods (avail-
able online).

Statistical Analyses

The automated visual evaluation detection algorithm yields a
score (ranging from 0.0 to 1.0) that predicts whether the image
represents a case of histologic CIN2þ. Examining first the repro-
ducibility of the scores, we compared 322 replicate pairs of
images included for this purpose in the validation set; the
Pearson correlation within pairs was 0.97 (95% confidence

interval [CI]¼ 0.97 to 0.98); the very high agreement justified us-
ing only one image per pair for subsequent analyses.

We conducted the analyses presented here using cohort en-
rollment images from the 30% of women in the initial validation
set plus enrollment images from the “leftover” women in the
Guanacaste cohort with <CIN2 not chosen for either the train-
ing or initial validation set (Figure 1). The main validation analy-
sis, focused on images taken at cohort enrollment visits,
evaluated accuracy of the automated visual evaluation algo-
rithm compared with the originally performed baseline screen-
ing tests (cervicography, cytology) and HPV testing introduced
for validation but not used as a screening test at that time.

We evaluated the accuracy of the automated visual evalua-
tion detection algorithm for identification of CIN2þ cases in the
validation set using Receiver Operating Characteristic (ROC)
curves and its summary statistic, area under the curve (AUC).
We created ROC-like curves for the ordinal categories of the
original screening tests and a ROC curve of the continuous auto-
mated visual evaluation empirically by the trapezoid method.
These AUC values were tested for statistical significance against
the AUC for automated visual evaluation by two-sided chi-
squared tests (31). For analyses requiring a categorical positive/
negative result for automated visual evaluation, we chose the
cutpoint in the continuous score distribution, specific to that
age group in age-stratified analyses, that maximized Youden’s
index (sensitivity þ specificity – 1) (32).

In a separate analysis to estimate the impact of a single
screening round for the full Guanacaste cohort, we filled in for
images from women used in the training set and therefore

Figure 2. The system architecture of the automated visual evaluation algorithm. Two models are trained: a cervix locator (top), and the automated visual evaluation de-

tection algorithm (bottom). The final validation algorithm incorporated both cervix locator and automated visual evaluation.

A
R

T
IC

LE

4 | JNCI J Natl Cancer Inst, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/advance-article-abstract/doi/10.1093/jnci/djy225/5272614 by SuU

B Brem
en user on 29 January 2019

https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djy225#supplementary-data
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djy225#supplementary-data
Deleted Text: NLM, 
Deleted Text: ,
https://academic.oup.com/jnci/article-lookup/doi/10.1093/jnci/djy225#supplementary-data
Deleted Text: a
Deleted Text:  &equals; 
Deleted Text: &ndash;
Deleted Text: ``
Deleted Text: .
Deleted Text: ''.
Deleted Text: ,
Deleted Text: ,


excluded from the validation of the algorithm. To do so, we
reweighted; specifically, because the initial validation set was a
random sample of the training validation group, we could mul-
tiply the results for women in the validation set by the inverse
of the sampling fraction (30%) to represent all women used for
training and validation. We then added the remaining noncases
to reconstitute the full cohort.

Cases that resulted in differences between automated visual
evaluation algorithm results and original evaluator interpretation
of the same cervigram images were rereviewed without masking
by an expert gynecologic oncologist and colposcopist (ME) to note
any subjective patterns that might explain discrepancies.

Results

The cohort study population enrolled in 1993–1994 (Table 1) was
a random sample of adult women in Guanacaste Province, rang-
ing in age from 18 to 94 years (median 35 years). The province
was mixed rural and small town. Most women were married
(76.1%) and parity was high (92.3). Smoking was unusual (10.7%
were current smokers), but oral contraceptive use (present or
past) was common (77.7% had ever used oral contraceptives).
The prevalence of carcinogenic HPV types was less than 20%
and declined sharply with age.

There were 241 histologically confirmed cases of precancer
(CIN2/CIN3) and 38 cases of cancer observed among 9406
women followed for up to 7 years in the population-based
Guanacaste cohort. Glandular lesions were very uncommon
and categorized with squamous lesions of equivalent severity
(eg, rare AIS was included with CIN3). The mean automated vi-
sual evaluation algorithm result scores at enrollment were
equivalent for CIN2 vs CIN3 (0.70 and 0.69, P¼ .51) and statisti-
cally nonsignificantly higher for the uncommon cancers (0.80,
P¼ .42) (Figure 3). In subsequent analyses, we combined CIN2,
CIN3, and cancer in a single case group.

The AUC for automated visual evaluation of the enrollment
cervical images, for women of all ages, was 0.91 (95% CI¼ 0.89 to
0.93) (Figure 4). Automated visual evaluation was statistically
significantly more accurate than cervigram result (AUC¼ 0.69,
95% CI¼ 0.63 to 0.74; P< .001).

As shown in Figure 4, automated visual evaluation perfor-
mance was also statistically significantly more accurate than
conventional Pap smears (AUC¼ 0.71, 95% CI¼ 0.65 to 0.77;
P< .001), liquid-based cytology (AUC¼ 0.79, 95% CI¼ 0.73 to 0.84;
P< .001), first-generation neural network-based cytology
(AUC¼ 0.70; 95% CI¼ 0.63 to 0.76; P< .001), and HPV testing
(AUC¼ 0.82, 95% CI¼ 0.77 to 0.87; P< .001).

We examined all 16 discrepant findings that were algorithm
positive/HPV negative. The additional positives by automated
visual evaluation tended to occur among younger women
(median¼ 26.5, P¼ .06 by Wilcoxon test compared with the rest
of the cases in the cohort whose median age was 35 years).
They were likely to be diagnosed with CIN2 (12/16 [75.0%] com-
pared with 20/61 [32.8%] of other cases, P¼ .008).

In anticipation of designing screening programs, we consid-
ered three distinct age ranges: 18–24 years, 25–49 years, and 50þ
years, with the intermediate age group of primary interest be-
cause it coincides with the majority (130/228) of CIN2-CIN3
cases and higher sensitivity (127/130, P< .001 compared with
younger women) (Table 2). We estimated that a single auto-
mated visual evaluation screening round targeting women at
the prime screening ages of 25–49 years could identify 55.7%
(127/228) of precancers (CIN2/CIN3/AIS) diagnosed cumulatively

in the entire adult population. To achieve this level of sensitiv-
ity in the entire population by a single round of screening
women aged 25–49 years would require referring 11.0% (982/
8906) of the entire population (and 18.0% [982/5460] of those
aged 25–49 years) for treatment.

Review of enrollment images from cases with discrepant hu-
man vs automated visual evaluations (and a random tenth of
discrepant noncases) revealed that many of the automated vi-
sual evaluation algorithm result-positive/cervigram-negative
cases of CIN2þ (additional true positives) had suboptimal
images (eg, poor focus or washed-out color during scanning of
film), or there were obstructing vaginal folds or blood. No clear
patterns emerged from review of images with discrepant results
among women with <CIN2.

Table 1. Selected demographic features of the 9406 women in this
analysis of the Guanacaste cohort, and their enrollment screening
results

Feature or test result No. %

Enrollment age, y
18–29 2598 (27.6)
30–49 4357 (46.3)
50–94 2451 (26.1)

Marital status
Married 7157 (76.1)
Separated/widowed 508 (10.2)
Single 1290 (13.7)

Age at first intercourse, y
�16 3269 (34.8)
17–18 2579 (27.4)
19þ 3550 (37.8)

Lifetime No. of partners
1 4934 (52.5)
2–3 1947 (33.1)
4þ 1358 (14.4)

Lifetime No. of pregnancies
0 723 (7.7)
1–2 2588 (27.5)
3–4 2475 (26.3)
5þ 3620 (38.5)

Current smoker
No 8398 (89.3)
Yes 1003 (10.7)

Ever use oral contraception
Yes 5677 (77.7)
No 1634 (22.4)

Enrollment Pap result*
Normal 7906 (84.1)
ASC-US 4227 (8.4)
LSIL 471 (5.0)
High-grade 232 (2.5)

Enrollment cervicography*
Negative 8176 (86.9)
Atypical 868 (9.2)
Low-grade 316 (3.4)
High-grade/cancer 46 (0.5)

Enrollment HPV result*
Negative for carcinogenic types 6683 (71.1)
Positive (not HPV16) 2314 (24.6)
HPV16 393 (4.2)

*Missing test results not shown but counted in totals such that percentages do

not sum to 100%. ASC-US ¼ atypical squamous cells of undetermined signifi-

cance; HPV ¼ human papillomavirus; LSIL ¼ low-grade squamous intraepithelial

lesion.
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Some trends emerged based on analysis of the heat maps
highlighting regions of the image that most influence the algo-
rithm prediction (Supplementary Figures 3–7, available online).
The model usually based its prediction primarily on the region
surrounding the os, and performed best when the cervix was
oriented directly towards the camera. It was more affected by
regions with visible texture than by smooth regions. In general,
the model was not excited by glare from the camera’s light or
other distractors, although in some cases the presence of cotton
swabs or other noncervix objects did distract the model.

Analysis of the long-term follow-up of the cohort including
linkage to the Costa Rican Tumor Registry revealed 39 cancers.
Most were in the training set; 17 were not and had enrollment
severity scores (Table 3). Women with cancer missed by auto-
mated visual evaluation tended to be diagnosed by the tumor
registry merge (mainly older women diagnosed after 7 years of
active follow-up).

The automated visual evaluation detection algorithm could
theoretically be used to triage women testing positive for HPV
rather than for primary screening. Training another automated
visual evaluation model restricted to HPV-positive women (data
not shown), a sensitivity of 100% (13/13) was achieved with a
specificity of 57.5% (103/179). Therefore, primary HPV testing us-
ing self-sampling, if it matched the HPV test performance of the
early assays we used in 1993–1994, followed by the automated
visual evaluation algorithm restricted to positives could achieve
the same aggregate sensitivity while more than halving the
number of women requiring cervical examinations.

Discussion

Using a deep learning approach called Faster R-CNN with exten-
sive image augmentation based on a pretrained model, we
trained and validated an image analyzer that performs
“automated visual evaluation” of the cervix. As a primary
screening method, the algorithm, trained using digitized cervi-
grams from the Guanacaste Cohort, achieved excellent sensitiv-
ity for detection of CIN2þ in the age group at highest risk of
precancers. The performance surpassed colposcopist evaluator
interpretations of the same images (cervicography) and com-
pared favorably to conventional Pap smears (and alternative
kinds of cytology) while matching the screening accuracy of an
early version of PCR-based HPV testing. The additional positive
evaluations among women that were negative for HPV need fur-
ther study before they can be believed; logically, it is hard to ac-
cept and there was an indication that the cases were an
unusually young group with incident CIN2, suggesting some
possibility of misclassification of both visual appearance and
outcome.

Restricted to the age group at which risk of precancer peaks,
to achieve nearly perfect sensitivity for cases occurring up to 7
years after examination generated a large number of false posi-
tives among screened noncases. More balanced cutpoints for
positivity might be chosen to limit excessive treatments, al-
though sensitivity would drop. Another possibility for improv-
ing specificity while retaining high sensitivity might be
combination screening (commonly called “cotesting”) with
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Figure 3. Comparison of the mean scores obtained by comparing enrollment images from women whose worst diagnosis within the cohort was cervical intraepithelial

neoplasia (CIN) 2, CIN3, or cancer. These subsets of the cases were not statistically significantly different with regard to severity scores generated by the algorithm.

Therefore, we combined all into a single case group. We show a box and whisker plot of 32 CIN2, 38 CIN3, and seven cancers, giving quartiles, means, and outliers of

case probability for each diagnosis within the cohort.
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automated visual evaluation and HPV testing, when such tests
become more affordable and more widely available than they
currently are.

To permit widespread use of automated visual evaluation
detection algorithms, the method would need to be transferred
from digitized cervigrams to contemporary digital cameras, be-
cause cervicography is obsolete and discontinued. If the transfer
is achieved, health workers would still need to visualize the cer-
vix and take well-lit, in-focus images for analysis with the

cervix in full view. The minimal required equipment (in addi-
tion to the algorithm software) would be acetic acid (vinegar),
disposable specula (or sterilization equipment), and the imaging
system, such as a dedicated smart phone or digital camera.

Images that resulted in discrepancies between the auto-
mated visual evaluation algorithm and clinician interpretation
revealed that the performance was affected by image quality
and obstructions as well as traditional discordant evaluations
due to human subjectivity. So, rather than focusing on training

Figure 4. Receiver operating characteristic (ROC) curve of automated visual evaluation of cervical images and comparison of performance in identification of cervical

intraepithelial neoplasia 2þ. ROC-like curves are shown for the categorical variables for simple visual and statistical comparison with automated visual evaluation

(two-sided chi-squared tests). The thresholds are listed on each curve, showing the sensitivity and 1-specificity applicable to that cutpoint. Automated visual evalua-

tion was as accurate or more than all of the screening tests used in the cohort study, including: A) automated visual evaluation; B) cervicography: area under the curve

(AUC); C) conventional Pap smear; D) liquid-based cytology; E) first-generation neural network-based cytology; and F) MY09-MY11 PCR-based human papillomavirus

(HPV) testing. ASC-US ¼ atypical squamous cells of undetermined significance; HSIL ¼ high-grade squamous intraepithelial lesion; LSIL ¼ low-grade squamous intrae-

pithelial lesion.
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Table 2. Estimated comparison of automated visual evaluation performance by age groups

Automated visual evaluation by age CIN2þ, No. <CIN2, No. Total No. Age-specific sensitivity, % Age-specific specificity, %

<25 y
þ 46 226 272 82.1 77.2
� 10 765 775
Age-specific total 56 991 1047

25–49 y
þ 127 855 982 97.7 84.0
� 3 4475 4478
Age-specific total 130 5330 5460

50þ y
þ 39 399 438 92.9 83.2
� 3 1969 1972
Age-specific total 42 2368 2410

Total 228 8689 8917 — —

Table 3. Severity scores from automatic visual evaluation algorithm and screening results, from enrollment visit of the Guanacaste cohort
study, for cases of invasive cancer*

Years to diagnosis Enrollment age, y HPV type result Pap smear result Cervigram result Algorithm severity score

Enrollment 21 16, 52 Cancer Cancer Training
Enrollment 26 16, 18, 51 Normal High-grade Training
Enrollment 29 18, 31 HSIL (CIN2) High-grade Training
Enrollment 34 16 Microinvasive High-grade Training
Enrollment 35 31, 45 Microinvasive Cancer 0.98
Enrollment 38 16 HSIL (CIN2) Cancer Training
Enrollment 41 16 ASC-US Cancer 0.78
Enrollment 47 18 Microinvasive Cancer? Training
Enrollment 54 16 Microinvasive Ccancer? Training
Enrollment 71 53, 82v Microinvasive Negative 0.13
Enrollment 73 33 Microinvasive Cancer 0.96
Enrollment 74 35 HSIL (CIN3) Negative 0.35
Enrollment 42 Equivocal Microinvasive Cancer? 0.84
1 y 37 18 Normal Negative Training
1 y 61 Negative Normal Negative Training
2 y 23 16 ASC-US Low-grade 0.87
2 y 64 45, 51, 58 Normal Negative 0.30
3 y 49 16 ASC-US Negative Training
5 y 29 18 Normal Negative Training
5 y 36 16 Normal Negative 0.71
6 y 38 Negative HSIL (CIN2) Negative Training
6 y 45 31 Normal Missing Missing
6 y 48 Negative Normal Negative Training
6 y 66 56 Microinvasive Negative 0.38
7 y 50 Negative Normal Negative Training
7 y 63 Negative Normal Negative Training
8 y 35 Negative Normal Negative 0.02
8 y 52 16 Normal Negative 0.70
8 y 63 16 Normal Negative Training
8 y 81 Negative Normal Negative 0.34
9 y 28 18 Normal Negative Training
10 y 65 16 HSIL (CIN3) Negative Training
10 y 75 85 Microinvasive Negative Training
11 y 75 Negative Normal Negative 0.16
12 y 68 Negative Normal Negative 0.02
13 y 56 Negative Normal Negative 0.75
15 y 78 Missing Missing Atypical Training
16 y 52 Negative Normal Negative Training
17 y 21 Negative Inadequate Atypical 0.04

*ASC-US ¼ atypical squamous cells of undetermined significance; CIN2¼ cervical intraepithelial neoplasia 2; CIN3¼ cervical intraepithelial neoplasia 3; HSIL ¼ high-

grade squamous intraepithelial lesion.
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for the subtleties of visual appearance, which is a difficult skill,
the training for automated visual evaluation could highlight
more easily acquired skills of improving image quality and
lighting and removing obstructions.

We also anticipated a second approach to using the auto-
mated visual evaluation detection algorithm, specifically as a
triage method restricted to women testing HPV positive, if HPV
testing is the primary screen. HPV testing offers the possibility
of cervicovaginal self-sampling (33), with only a small minority
of women testing HPV positive and requiring gynecologic
examinations. Moreover, HPV testing has proven very long-
term negative predictive value, that is, reassurance when nega-
tive (34,35). The combination of self-sampled HPV screening
and triage use of automated visual evaluation detection could
greatly reduce the need for speculum examinations. Choice of
the automated visual evaluation algorithm screening strategy
(general screening vs triage of HPV positive women) will depend
on setting and cost-effectiveness analyses. Currently, HPV tests
still take several hours and cost too much for many settings, but
low-cost point-of-care and batch testing methods applicable to
self-sampling are in advanced research and development and
likely will be available within a very few years.

It is a strength of this study that it was conducted in a ran-
dom population sample of a previously poorly screened popula-
tion that resembles HPV-positive women in other low- and
middle-income country (LMIC) target screening populations.
Definition of precancer was very good based on repeated
screening during extended follow-up and panel review of
histopathology.

The major limitations are the following. We studied a rela-
tively small numbers of cases from a single cohort study. We
included CIN2 cases in the case group, whereas it would be
ideal to train on more definite cases of precancer (ie, CIN3
and AIS caused by types of HPV prevalent in invasive cervical
cancers). The images were captured by a small team of highly
trained nurses and not a wide variety of health workers. The
work relied on images taken with a discontinued film camera
technique, rather than contemporary digital image
technology.

Nonetheless, the proof-of-principle strongly supports fur-
ther evaluation of automated visual evaluation. Rather than
resurrecting obsolete film camera technology to achieve the ob-
served results, we are currently working to transfer automated
visual evaluation to images from contemporary phone cameras
and other digital image capture devices to create an accurate
and affordable point-of-care screening method that would sup-
port the recently announced World Health Organization initia-
tive to accelerate cervical cancer control.

Our findings extend and improve upon the results obtained
in more preliminary reports listed in the Supplementary Table 1
(available online). Internationally, a sizable number of commer-
cial and academic research groups are now exploring deep
learning algorithms for cervical screening. In collaborative work
moving ahead, we will be considering the following topics:
assessing the international variability in cervical appearance
(eg, inflammatory changes) and need for region-specific train-
ing; examining which camera characteristics affect the algo-
rithm and which devices are adequate for image capture;
training the camera to take an image automatically when a fo-
cused, adequately lit and visualized cervix is visible; training an
algorithm by segmentation studies focused on the squamoco-
lumnar junction to assess when ablational therapy is possible
or whether (mainly endocervical) extent of lesion suggests need
for excision; and evaluating how best to combine automated

visual evaluation with HPV testing, and eventually with vacci-
nation, to accelerate control of cervical cancer.
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